Quelle organisation autour de la Business Intelligence et du Big data dans les grandes entreprises ? (1/5)

Les activités de Business Intelligence et de Big Data, de part de leur aspect parfois très transverse, posent beaucoup de questions sur l’organisation à mettre en oeuvre pour en assurer la réussite et l’efficience.

Plus spécifiquement, les questions qui se posent sont :

En introduction, l’activité de BI étendu intégrant les nouvelles méthodes et outils d’analyse de données du big data, a beaucoup évolué sur les 20 dernières années.

D’abord une simple consolidation de données en Infocentre, puis les grands programmes dataware house qui espéraient extraire de manière exhaustive toute l’information pour la ranger dans de grands entrepôts de données très structurés, puis les initiatives plus réactives commençant à valoriser cette information de plus en plus en temps réel
sur des niches et avec une décentralisation des sujets par grands pans fonctionnels (marketing, ventes, production, achats, contrôle de gestion).

Plus récemment de nouveaux types de données changent et enrichissent la donne : données issues des objets connectés, de la mobilité, des réseaux sociaux, de l’open data… Les sources de données se multiplient en termes de natures/structures et d’acteurs. Au delà les technologies d’analyse de données se « vulagrisent ». Non pas qu’il y ait vraiment de révolutions, mais plutôt que des technologies d’exploitation des données deviennent de plus en plus praticables à grande échelle : machine learning, modèles de prévision, analyse de graphes, …

Du coup, les questions précédentes prennent un relief particulier… Il n’y a pas un seul modèle de BI, (et donc d’organisation à mettre en place) mais plusieurs et qui seront variables selon les maillons de la chaine de valeur du BI.

La chaine de la valeur classique d’une BI étendue

Acquisition

Aller chercher la donnée dans les systèmes opérationnels doit rester la responsabilité de la DSI. Ponctuellement un quick win peut être obtenu avec des solutions agiles comme QlikView ou Tableau qui s’alimentent directement dans des bases d’applications métier. Cela ne peut pas être une solution pérenne. Et doit être géré par des équipes DSI classiques.

Consolidation & mise en qualité

Cette fonction est probablement celle qui va/doit le plus changer. La vision d’une dataware house urbanisé qui passe par des étapes très structurées ne répond plus aux enjeux de rapidité. Il vaut mieux vivre avec les anomalies que de chercher à les corriger toutes. Il y a un vrai enjeu pour la DSI a essayer de mettre à disposition l’information de manière très efficace et réactive. Sans faire trop d’hypothèses sur les usages qui en seront faits. C’est un élément qui fait du sens à partager, surtout pour les éléments les plus volumineux et critiques. La source du big data interne en quelque sorte.

Structuration

La structuration en tables de faits et/ou cubes. Cela existe et existera toujours. Mais cette dimension structurée et institutionnelle n’est que la partie émergée de l’iceberg. Qui n’est plus nécessairement là où est la plus grande valeur. On structure les problèmes que l’on connaît et que l’on maîtrise. L’objectif aujourd’hui devient de découvrir de nouveaux gisements… Pour la partie structurée en charge de produire des indicateurs de pilotage opérationnels aux différents de l’organisation, une démarche classique DSI est utile pour assurer la qualité des données et leur mise en cohérence. Mais éventuellement à scinder entre ce qui est commun groupe et ce qui est propre à des branches voire BUs.

Pilotage des indicateurs

Cela reste un élément clé de communication. Avec un besoin de qualité sur la sémantique des indicateurs publics. Rien de plus destructeur que des chiffres divergents et incohérents …

Analyse des données

C’est un domaine en pleine explosion, avec des outils, méthodes en grande effervescence. Il faut privilégier de l’agilité. Et permettre les explorations tactiques et agiles sur le stock de données brut consolidé. C’est un des endroits où cela bouge le plus et où les technologies sont les plus complexes et liées aux typologies de problèmes.

Calcul de données opérationnelles  et réinjection dans les systèmes opérationnels

Ces options se développent de plus en plus. Le BI et le Big Data participent du SI. Il ne s’agit plus simplement d’indicateurs passifs, mais de solutions de plus en plus intégrées aux processus opérationnels. Pour piloter les réappros, la production, les stocks, les prix, les ventes, … Ces boucles donnent à ces technologies une criticité tout à fait nouvelle. Qui doit être sécurisée quand elle en vient à piloter l’opérationnel et le mettre en péril. Celles ci sont impérativement à mettre sous le contrôle d’une DSI.

Le prochain article de cette série reprendra les questions posées en introduction et proposera des éléments de réponse.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *